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Inertial waves in a homogeneous rotating fluid travel along rays that are inclined
with respect to the rotation axis. The angle of inclination depends solely on the ratio
of the wave frequency and twice the angular frequency. Because of this fixed angle,
the waves can become focused when reflected at a sloping wall. In an infinitely long
channel with a sloping wall, the repeated action of focusing may lead to the approach
to a limit cycle, the so-called wave attractor, where the energy is concentrated.
This effect is studied in the laboratory in a rectangular tank with one sloping wall,
placed excentrically on a rotating table. The waves are excited by modulation of
the background rotation. Several frequency ratios are used to study different wave
attractors and one standing wave. The observations consist mainly of particle image
velocimetry data in horizontal and vertical cross-sections in one half of the basin.
The attractors are observed in the vertical cross-sections. They show continuous
phase propagation, which distinguishes them from the standing wave where the phase
changes at the same time over the whole cross-section. However, particle motion
of inertial waves is three-dimensional and the actual basin is not an ideal two-
dimensional channel but is of finite length. This implies that the waves must adapt to
the vertical endwalls, although a prediction of the nature of these adaptations and the
structure of the three-dimensional wave field is at present lacking. For critical waves,
whose rays are parallel to the slope, clear three-dimensional behaviour is observed.
The location of most intense motion along this critical slope attractor changes in the
horizontal direction and horizontal phase propagation is observed, with a wavelength
between 1/5 and 1/4 of the basin length. For the other attractors there is little
evidence of phase propagation in the horizontal direction. The motion along the
attractor is however stronger near the vertical endwalls for attractors with wave rays
of slopes close to 1 or larger. The standing wave and the other attractors are more
clearly visible near 1/5 of the tank length.

1. Introduction
Fluids in solid-body rotation are stably stratified in angular momentum (e.g.

Greenspan 1968b). In the same way that a fluid, stably stratified in density, can
support internal gravity waves, a fluid in solid-body rotation can carry inertial waves.
These are sometimes called gyroscopic waves to distinguish them from the limiting
case of inertial oscillations in a rotating, density-stratified fluid, when the frequency
equals twice the rotation frequency (LeBlond & Mysak 1978). Inertial waves and
internal waves share the property that their vertical direction of propagation is
restricted. It depends on the wave frequency and, respectively, on the rotation rate
and the strength of the stratification. They travel obliquely through the fluid, as
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shown experimentally by Görtler (1943) for internal waves and Oser (1958) for
inertial waves. Owing to the strong analogy between inertial and internal waves for
two-dimensional flow (Veronis 1970), it is possible to investigate internal waves and
thereby obtain information on inertial waves. This justifies the inclusion of results on
internal waves in the discussion. The most important difference between these waves
is that internal wave particle motion is rectilinear, so that in a three-dimensional
container two-dimensional waves can also be realized, whereas inertial wave particle
motion is intrinsically three-dimensional (circular) due to the Coriolis force, which
gives inertial waves a distinct three-dimensional character.

The restriction on the propagation direction has consequences for reflection. In
general, the waves do not reflect according to Snell’s law, but will be focused or
defocused (Phillips 1963), since parallel incident wave rays must remain parallel after
reflection. The only exceptions are walls that are parallel or perpendicular to the
rotation axis or the direction of gravity, for inertial and internal waves respectively.
In an enclosed basin, if focusing is not balanced by defocusing, repeated reflection
will lead to the appearance of a limit cycle. This cycle is called the wave attractor
(Maas & Lam 1995) since all wave rays will approach this cycle. Here the wave
energy is concentrated. But the wave rays will not actually reach this cycle in finite
time (Greenspan 1968a).

The notion of such ‘pathological’ behaviour in fluids is quite old. Görtler (1943,
1944) mentioned that there might be regularity problems along the wave rays, which
may disappear if viscosity is taken into account. Stern (1963), Bretherton (1964),
Stewartson & Rickard (1969) and Stewartson (1971, 1972) found trapping of low-
frequency oscillations near the equator for a thin spherical shell, all using different
concepts and approximations. Israeli (1972) found that this trapping does not occur
for isolated frequencies but for continuous frequency intervals, bounded by frequencies
for which reflection takes place at critical latitudes of the inner and outer sphere.
Numerical models were used to further study the occurrence and behaviour of the
wave attractors, and the structure of the shear layers that occur when viscosity is
included in the model (Rieutord, Georgeot & Valdettaro 2001).

The spherical shell is a geometry of special interest in geophysics (oceans, liquid
outer core of the Earth) and astrophysics (stars). But there are other geometries for
which wave focusing towards a limit cycle takes place. A relevant case is an internal
wave approaching a beach, represented by a wedge. If the bottom slope is less steep
than the slope of the wave ray, the wave energy can be reflected up-slope. After
repeated reflection at the surface and the bottom the wave approaches the corner of
the wedge (Wunsch 1969), which can then be interpreted as a (point) attractor.
Maas & Lam (1995) investigated internal waves reflecting in different simple
geometries and found various attractors for a parabolic basin and a trapezoidal
basin (‘bucket’). They also investigated the distribution of attractors in frequency
space and found a self-similar structure with small frequency intervals with weak
attractors between the larger frequency intervals with stronger attractors.

The studies mentioned so far are purely theoretical work. In laboratory experiments
one often works with basins in which no wave focusing takes place, with basin walls
parallel or perpendicular to the axis of rotation or the direction of gravity. This reveals
a discrete set of standing waves. The rotating cylinder is particularly widely studied.
McEwan (1970) studied standing waves, corresponding quite well to inviscid linear
predictions, but he also reported a resonant collapse for larger amplitudes, leading to
disorder. Manasseh (1992) reports various breakdown mechanisms for standing waves
in a rotating and precessing cylinder. Aldridge & Toomre (1969) observed standing
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inertial waves in a rotating sphere, a geometry for which focusing is balanced by
defocusing.

Experiments in which internal gravity wave energy is attracted towards the corner
of a wedge were carried out by Wunsch (1969) and Cacchione & Wunsch (1974).
Greenspan (1968a) and Beardsley (1970) investigated this for inertial waves in a cone.
Beardsley (1970) also observed inertial waves in a truncated cone. Such a geometry
has the same cross-section as the bucket described by Maas & Lam (1995) and enables
focusing. Although Beardsley interpreted his results in terms of standing waves, they
can be interpreted alternatively in terms of wave attractors, as will be argued in the
discussion, in § 5.

A visually clear experimental realization of an internal wave attractor that is really
a limit cycle was done by Maas et al. (1997) in a rectangular tank with a sloping
sidewall for internal gravity waves. This is the most simple geometry in which to
study wave focusing towards an attractor. That this is also the case for inertial waves
in a homogeneous, rotating fluid was shown by Maas (2001).

In the present study, the experiments described in Maas (2001), where a single
inertial wave attractor is observed, are extended. We use different forcing frequencies
to generate attractors of different shape and one standing wave. The predicted
boundaries of the frequency interval over which the most simple attractor exists are
checked experimentally, and the difference with the standing wave will be illustrated.
We took measurements at various horizontal and vertical cross-sections to investigate
the changes of the wave field in the horizontal direction.

The results by Maas (2001) already confirm that focusing towards an attractor,
predicted by the two-dimensional theory, exists. However, because of the intrinsic
three-dimensional nature of inertial waves, the finite extent of the basin is expected
to influence the horizontal structure of the wave field. Since we have not been able
to solve the Poincaré equation that describes the full three-dimensional wave field (as
is possible for a rectangular tank without a sloping wall, Maas 2003), we depend on
the experimental results to obtain insight in the three-dimensional structure. In the
next section the theory of inertial waves will be briefly outlined and the concept of
a wave attractor illustrated. Then the experimental set-up is discussed. To illustrate
the attractor shapes, results of measurements in vertical cross-sections are shown.
Next, vertical cross-sections at different positions are compared to study changes
in the horizontal direction and a small selection of measurements in horizontal
cross-sections will be presented. Finally the results are discussed.

2. Theory
The basic equations governing a rotating inviscid homogeneous fluid are the

momentum equations and the continuity equation. In this paper we will consider
waves in a frame of reference that is in nearly solid-body rotation. The angular velocity
of the frame will be Ω =Ω0 + εΩ1(t), where Ω0 is the background rotation rate while
Ω1(t) is its time-periodic modulation. The strength of the periodic modulation ε (� 1)
determines the scale of the perturbations. The linearized momentum equations for
the perturbation velocities and perturbation pressure then are

∂u

∂t
= 2Ω0v + y

∂Ω1

∂t
− ∂p

∂x
, (2.1a)

∂v

∂t
= −2Ω0u − x

∂Ω1

∂t
− ∂p

∂y
, (2.1b)
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∂w

∂t
= −∂p

∂z
, (2.1c)

with u, v, w the perturbation velocity components in the x-, y- and z-directions with
z parallel to the rotation axis. The gradient of the pressure P and gravitational and
centrifugal forces form a dynamic equilibrium at zeroth order. In the linear equation,
they are combined in the perturbation pressure term p = P − (x2 + y2)Ω2/2 + ρgz,
where ρ denotes the uniform density and g the acceleration due to gravity.

The remaining right-hand-side terms due to rotation and modulation of the frame
are the Coriolis and Euler force respectively (Tolstoy 1973). The continuity equation
is

∇ · u = 0. (2.2)

At solid boundaries the normal velocity of the fluid must vanish, leading to the
boundary condition

u · n = 0, (2.3)

with n the outward normal.
In the experiments, we are interested in the inertial wave field. The behaviour of

these waves for a uniformly rotating fluid (Ω1 = 0) will be treated first, then the
generation of these waves via modulation of the angular frequency (Ω1 �= 0) will be
discussed.

2.1. Inertial waves

In this subsection we look at a free monochromatic wave ∝ exp(−iωt) of frequency
ω in a uniformly rotating fluid with angular velocity Ω0. Equations (2.1 a–c) and (2.2)
can then be reduced to a single equation for the pressure:

pxx + pyy − λ2pzz = 0 (2.4)

with

λ2 =
4Ω2

0 − ω2

ω2
. (2.5)

This so-called Poincaré equation (Cartan 1922) can be reduced to two dimensions
by assuming an infinitely long channel in the y-direction and y-independent waves,
so that derivatives with respect to y vanish. The resulting two-dimensional equation
is a wave equation (hyperbolic equation) if ω < 2Ω0. Note that, due to the Coriolis
force, the particle motion itself does have a component in the y-direction, as can be
seen from the linearized Euler equations (2.1 a–c).

For a very limited class of two-dimensional geometries, the wave equation can
be solved using separation of variables. The boundaries must then be parallel or
perpendicular to the rotation axis (rectangular), with the circle (or more generally,
the ellipse) as an exception. The solution then reveals a discrete set of standing
waves. For an arbitrary geometry one can use the method of characteristics. These
characteristics correspond physically to rays along which the energy propagates (see
Maas & Lam 1995). Every characteristic carries information on the pressure on
the boundary into the interior. Along a characteristic, the partial pressure (half the
pressure on the boundary) is conserved. At a point in the interior, the pressure is
the sum of the partial pressure values on each of the two characteristics through this
point.
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Figure 1. (a) Cross-section of a rectangular basin with sloping sidewall. Two parallel wave
rays (thin solid and dashed lines), making an angle θ with the rotation axis, reflect and their
distance apart decreases (focusing). They approach a limit cycle (thick solid square) due to
repeated focusing at the sloping wall. (b) Lyapunov exponent Λ as a function of the slope of
the characteristics with respect to the rotation axis. It illustrates that wave attractors occur
over an interval (window) in parameter space. Interval I: all wave rays are attracted towards
the upper right corner. Interval II: (1,1)-attractor. Interval III: (1,3)-attractor. Solid line: (1,2)
standing wave. In general: the more complex the structure, the weaker the attractor and the
smaller the window in which it occurs. The arrows indicate the values of tan θ for which
experiments are carried out. The corresponding labels refer to the (attractor) shapes shown in
figure 2.

If one substitutes the plane wave solution p(x, z) = P exp i(kx + mz), the dispersion
relation is

k

m
= ±λ. (2.6)

This shows that for a given frequency only four directions of propagation are possible.
Phillips (1963) gives a very general treatment of the physics of these waves. Wave
energy travels along characteristics (wave rays) x ± z tan θ = const, with tan θ = 1/λ
the slope of the group velocity vector with respect to the rotation axis. Lines of equal
phase are parallel to these rays. The phase propagates in a direction perpendicuar
to the energy, with the horizontal component opposite to the horizontal direction of
energy propagation.

2.1.1. Wave attractors

For reflection at boundaries parallel and perpendicular to the rotation axis,
incoming and reflected waves are symmetric with respect to the normal of the
boundary, and nothing special occurs. However, for an arbitrarily sloping wall,
the symmetry with respect to the normal is broken because of the constraint on the
direction of propagation. Hence waves will be geometrically focused or defocused.
In an enclosed basin repetitive focusing can lead to the appearance of a ‘wave
attractor’, a limit cycle where ultimately all wave energy ends, although not in finite
time (Greenspan 1968a). In figure 1(a) this is illustrated for the most simple case:
a rectangular basin with one sloping sidewall. This sloping sidewall provides the
possibility of wave focusing. Every time a wave ray reflects downwards from this
wall it gets closer to the limit cycle, the central square. This limit cycle is the only
periodic orbit for this frequency. The period is defined as the number of reflections
for this orbit to close onto itself. The total convergence or divergence along a wave
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Figure 2. Shapes of the attractors and the resonant mode in terms of wave ray paths (solid
lines) with direction of phase propagation indicated with arrows in (b–d, f ); corresponding
stream function of square attractor (g) and (1,2)-mode (h). See text for more explanation.

ray is represented by the Lyapunov exponent Λ (Maas & Lam 1995). Negative values
indicate convergence; positive values do not occur for this system, since the parameter
space is one-dimensional (Rieutord et al. 2001). The value of Λ is proportional to
log |(λ − s)/(λ + s)| where s = H0/B is the slope of the wall. Its only singularities
occur for λ= ±s when critical reflection causes immediate focusing and Λ → −∞. Λ

is inversely proportional to the period of the attractor (Maas & Lam 1995). A wave
attractor exists over a parameter interval. Over this interval, the attractor gradually
deforms, but the number of reflections at the boundary of the limit cycle is constant.
The intervals are bounded by values for which the attractor degenerates, connecting
two corners of the basin. Standing waves exist for isolated frequency values, when
focusing is exactly balanced by defocusing. Then all wave rays return back onto
themselves and Λ = 0. They are surrounded by frequencies for which the attractor
period approaches infinity and hence the Lyapunov exponent approaches zero.

We wish to study a number of patterns experimentally. The simplest attractor is
called a (1,1)-attractor, since it has one reflection at the bottom and one reflection
at the sloping wall. It is investigated for several values in the frequency interval
of its existence (window, interval II figure 1b), including the limiting values. The
corresponding shapes are illustrated in figure 2(a–f ). On approaching the lowest
value of tan θ , the (1,1)-attractor appears as a diagonal line from the upper left corner
to the lower right corner. For the specific geometry with the bottom length being
half the top length, this coincides with the frequency at which the wave rays are
parallel to the slope, which results in a single V-shaped structure (figure 2a). This
combination of attractors is called the ‘critical slope’ attractor and Λ → −∞ due
to the immediate focusing at the wall. This immediate focusing at the sloping wall
removes the possibility of focusing towards the diagonal structure, but when the wave
energy propagates parallel to the slope and reflects at the bottom it will travel along
this diagonal. For increasing θ , the pattern changes towards a parallelogram, with
the square (figure 2b) and self-similar (figure 2c) attractor as examples. The latter is
called self-similar since reflection at the top and the bottom of the tank occurs at
positions where the relative distances to the left and right corners are identical. The
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upper limit is reached when the attractor degenerates into a single line connecting the
upper right to the lower left corner (figure 2d ).

The next simple closed structure has one reflection at the bottom and two reflections
at the sloping wall (figure 2e). However, this (1,2)-structure is not an attractor.
Focusing for the downward reflection at this wall is cancelled exactly by the other,
upward, reflection. So every ray reflects back onto itself. The result is a standing wave
mode for which the stream function consists of two (counter-rotating) cells (figure 2h),
separated by the line on which every ray intersects itself (dotted in figure 2e). This is in
remarkable contrast to the square attractor, of which the stream function has patterns
that are repeated but become extremely small close to the attractor (figure 2g). In
figure 2(e), the characteristics connecting the corners of the basin are plotted (thick
dashed lines); where they intersect there is no motion: these two points are the centres
of the two cells. The other dashed line shows an arbitrary characteristic, returning
back onto itself. This mode exists for a single isolated frequency.

The most complicated structure that is studied is the (1,3)-attractor, which exists
over a much smaller frequency interval than the (1,1)-attractor (interval III in figure 1b,
shape illustrated in figure 2f ). Convergence is weaker than for the (1,1)-attractors (Λ
less negative), due both to the fact that focusing is weaker for this value of θ and to
the larger period.

In frequency space, between these attractors all kinds of complicated weak attractors
and standing modes exist, as illustrated by Maas et al. (1997) and as can be seen
from figure 1(b). They will be more difficult to realize and observe experimentally.

2.1.2. Three-dimensional aspects

So far the inertial wave problem has been reduced to a two-dimensional problem.
It is extremely difficult to solve the inertial wave field in three dimensions. No general
solution is available, and one needs a simplifying argument like separation of variables
(Stewartson & Rickard 1969), which is only possible for a limited class of domain
shapes (a cylinder (Kelvin 1880), a sphere (Bryan 1889) and a rectangular box (Maas
2003)), and even then only when the main axes of the domains are parallel and
perpendicular to the rotation axis.

Unlike for internal gravity waves, where particle motion is truly two-dimensional
(rectilinear), there is particle motion in the y-direction due to the Coriolis force.
Particles move anticyclonically along circles in planes along the characteristics x ±
z tan θ = const. Only the projection of this motion on the (x, z)-plane yields rectilinear
motion for plane waves. In a finite basin, the two-dimensional structures must be
modified by the frontwall (y = 0) and endwall (y = L) in order to fulfil the boundary
condition of no flow. This could result in a standing wave structure in the y-direction,
if the wavelength in the y-direction matches the dimensions of the basin. It is
also possible that waves travel along the attractor in the horizontal direction, thus
describing a kind of helix through the basin.

A phenomenon that could be encountered is a combination of inertial Poincaré
and Kelvin waves (Maas 2003). These waves are the purely inertial counterparts of
the conventional Poincaré and Kelvin waves, which are rotationally modified gravity
waves (LeBlond & Mysak 1978). Assuming standing waves in the vertical, in a
rectangular tank inertial Poincaré and Kelvin waves combine to give patterns in the
horizontal direction for eigenfrequencies of the system. Typically, modal structures
were obtained, with regions moving in unison, and amphidromes, with phase lines
circling around them. In the horizontal, particle motion is dominantly anticyclonic.
The resulting patterns have small-scale structures near the walls of the basin and
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Figure 3. Calculated vorticity-conserving horizontal flow for the tank with sloping wall. The
sloping part occupies the upper half of the figure. The centre of the flow cell is above the flat part
of the bottom.

increase in scale with increasing frequency. Whether these waves lead to similar
structures in a basin with a sloping wall is still an open question.

2.2. Vorticity-conserving flow

In the previous section free waves were considered. In the experiments, these are
generated via continuous weak modulation of the rotation rate Ω1(t) = Ω0 sin ωt . The
fluid, previously considered as being in solid-body rotation, will react on changes in
Ω by the generation of a vorticity-conserving horizontal flow.

There are two mechanisms via which inertial waves are excited. First, the horizontal
vorticity-conserving flow has a component through the sloping wall, which will be
compensated by the generation of waves. In a cylindrical container, this inviscid
mechanism is not operating, since the vorticity-conserving flow would be everywhere
parallel to the walls. In that case only the second generation mechanism applies:
Ekman pumping and suction. The flow parallel to the boundaries generates Ekman
layers in which fluid transport converges and diverges periodically, which generates
waves (Aldridge & Toomre 1969).

The forced equations with time variations of the angular frequency form a
system that is closely related to the spin-up problem of a container with a sloping
bottom that was studied by van Heijst, Maas & Williams (1994). For a shallow
tank ((height/length)2 �1) the shallow-water approximation was used to enable the
calculation of an analytical solution. This implies vertically uniform solutions, which
is only an approximation of the actual flow field. However, the exact solution for
the problem of a wedge-shaped container shows that the flow is nearly vertically
uniform for the ratio of height H0 and length L in the tank that will be used in our
experiments. This justifies the use of the shallow-water approximation.

Therefore, we solved the shallow-water equations for the basin with one sloping
wall. This can be done without further approximations. The detailed derivation of
the flow field can be found in the Appendix. The resulting horizontal velocity field is
plotted in figure 3. The pattern of the vorticity-conserving flow will change sinusoidally
with time. To obtain absolute velocities, the expressions found in the Appendix must
be multiplied by a factor Ar̄ sin ωt . Here r̄ is the distance from the centre of the
tank to the rotation axis and A an amplitude factor chosen to match the observed
vorticity-conserving flow, which appeared to be close to 1 (to within 20% for the
various observations). The inviscid forcing mechanism appears particularly relevant
near y = 0 and y = L where the flow is predominantly cross-isobath.

We have not been able to explicitly link the vorticity-conserving flow and the
inertial wave field. However, the inertial wave field in the vertical is expected to be
dominated by wave attractors, whose location is independent of the forcing location
and mechanism.
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Figure 4. Schematic of experimental set-up.

Name Period (s) ω/2Ω0 tan θ

(a) critical slope 43.17 0.5558 0.6685
(b) square 33.89 0.7092 1.0000
(c) self-similar 32.24 0.7445 1.1150
(d) degenerate 29.97 0.8006 1.3362
(e) (1,2) standing 26.82 0.8950 2.0060
(f ) (1,3) 25.32 0.9481 2.9802

Table 1. Applied modulation periods and corresponding parameter values.

3. Experimental set-up
The experiments were carried out on the 13 m diameter rotating platform of the

Coriolis Laboratory (Grenoble, France). The set-up is a larger version of the one
described in Maas (2001). A schematic of the set-up is shown in figure 4. On the
platform, a tank with size 107 × 500 × 80 cm3 (width 2B × length L × height H0) was
placed near the outer rim (r̄ ≈ 4m). A sloping wall was placed in the tank, reaching
from the outer upper corner to halfway to the bottom (x = B = 53.5 cm). The tank
had a glass front and a lid consisting of glass plates of 107 × 100 cm2 with metal
strips around them. The tank was filled with ordinary tap water.

The platform was rotated with a background period of 48 s (Ω0 = 0.13 rad s−1). To
generate the waves of frequency ω, as indicated, the rotation speed was perturbed
periodically with a small-amplitude perturbation, Ω = Ω0(1+ε sin ωt). The amplitude
of 8 cm s−1 of the modulation at the outer rim of the platform, relative to the back-
ground rotation velocity of 85 cm s−1, yields ε ≈ 0.1. The velocities of the vorticity-
conserving flow have maximum values of about 1.5 cm s−1 relative to the rotating
platform. In table 1 the modulation periods employed, the frequency ratio ω/2Ω0 and
tan θ are given.

For visualization of the flow almost neutrally buoyant particles were added to the
water. These were illuminated by a sheet of laser light approximately 2 cm thick.
The particles within this sheet were detected by a digital camera (768 × 484 pixels,
frame rate 30 Hz). With particle image velocimetry (PIV) (Fincham & Spedding 1997)
the pictures taken by the camera were translated into velocity vector fields after every
90 frames, using a subset of these frames. The ultimate results of these measurements
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are series of two-dimensional velocity fields on a 62 × 46 grid with time intervals
of 3 to 4 s, depending on the exact frame subset settings. Particle motion in the
direction perpendicular to the laser sheet cannot be detected, so the vector fields
represent a projection of the motion onto the plane. Measurements were taken in
(x, z)-planes (‘vertical cross-sections’) like those illustrated in figure 4 and in (x, y)-
planes (‘horizontal cross-sections’) where the position of the laser and the camera
were interchanged.

Measurements of vertical cross-sections were taken from y = 60 to 210 cm;
measurements closer to the front wall (y = 0) and further into the basin caused
practical difficulties. Measurements of horizontal cross-sections cover only a small part
of the tank. This is because the camera cannot cover more than about 80 × 100 cm2

in the (x, y)-plane, at the height at which it was placed. The depth range of the
measurements is from z =23 to 63 cm. Only the self-similar and square attractor
measurements were taken at two different y-positions.

For the vertical cross-sections a time series consists of 120 vector fields, covering
about 16 wave periods. For the horizontal cross-sections a time series consists of 200
vector fields, spanning about 25 wave periods. In order to observe the wave field in
the horizontal cross-sections, the vorticity-conserving flow must be subtracted from
the measurements. Using the theoretically predicted vorticity-conserving flow field
with an experimentally determined amplitude factor, this otherwise dominant flow
was accounted for. The vertical cross-sections are hardly affected by the vorticity-
conserving flow, since for the locations of these cross-sections, this flow is mainly
perpendicular to the (x, z)-plane.

To compare cross-sections at different locations and for different forcing frequencies,
they should have the same phase with respect to the forcing. This was not arranged
automatically in the experiment. Therefore, the time series must be reordered such
that every series starts with the same phase. For the horizontal cross-sections this can
be done using the phase of the vorticity-conserving flow, which is easy to determine.
In the vertical cross-sections the vorticity-conserving flow can hardly be seen and a
different method is needed. We can use the idea that a horizontal and a vertical cross-
section must show the same values for the u-component at their line of intersection,
when these sections represent the same phase of the flow. One can determine for which
time shift of the vertical time series the u-components on this line match those of
the horizontal cross-sections. The time shift combined with the correctly determined
phases for the time series of the horizontal cross-sections results in phases for the time
series of the vertical cross-sections. To increase the accuracy of this method (an error
in the phase of 10–20◦ is possible), a single vertical cross-section series was matched
with all the horizontal series available for that location. This gives fairly consistent
results, except for the (1,3)-attractor and at y = 60 cm for the (1,2)-mode.

Further the data can be rearranged such that instead of a long time series with few
measurements per period one obtains a single period with high frequency sampling
rate (‘asynchronous sampling’). This is illustrated in figure 5 for synthetic data. It can
only be used if the observed system is stationary and the motion has frequencies that
are multiples of the modulation frequency. Then also frequencies that are higher than
the original sampling frequency can by resolved and aliasing is prevented.

In addition to the PIV measurements, experiments with dye were performed to
observe the large-scale flow. Also an experiment with a different forcing mechanism
was done: the tank was not modulated but a paddle over the full length of the tank
was oscillated in the upper left corner. Because of practical problems with the paddle,
only a few experiments could be performed.
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Figure 5. Example of asynchronous sampling and reorganization of data. (a) Synthetic
time series. (b) The same data points, but rearranged with respect to the phase of the
vorticity-conserving flow and with the application of asynchronous sampling.

4. Results
The first aim of the experiments was to find the theoretically predicted attractors.

Therefore, we start with results from the vertical cross-sections. First, results for a
fixed y-coordinate are shown to compare with the theoretically predicted patterns.
Then the variation of these patterns with the y-coordinate will be discussed, with
emphasis on the critical slope and the self-similar attractor. Finally the results for the
horizontal cross-sections are presented.

All results will be presented in scaled coordinates. The x-coordinate is scaled with
the half-width of the tank B = 53.5 cm, the y-coordinate with the length L =500 cm
and the z-coordinate with the height H0 = 80 cm.

4.1. Vertical cross-sections

4.1.1. Visualization of attractors

The results of PIV are vector fields. In these vector fields one can often observe
relatively strong motion around the location of the theoretical attractor. But these
vector fields are just snapshots of time-varying motions; they do not fully represent
the behaviour of the wave field. Furthermore, particle motion has a component of
motion in a plane perpendicular to the plane of observation. So we measure only a
projection of the motion.

To get an idea of the motion over a whole period, hodographs (lines joining the
tips of the velocity vectors) were made. The asynchronous sampling method was used
and seven vector fields with about the same phase were averaged. This can be justified
since the motion appears to be periodic; the forcing frequency is by far the most
dominant in the spectrum. An example is plotted in figure 6(a). It illustrates that over
a period, velocity vectors describe ellipses. On the attractor itself (see also figure 2c),
these can be long and narrow, with the major axis aligned along the attractor. This is
consistent with the theoretical prediction of circular motion with the other component
of motion in a plane perpendicular to the plane of observation. Where the attractor
reflects from the boundaries, the motion is nearly circular: clockwise for reflection at
the top and bottom, anticlockwise for reflection at the straight and sloping sidewalls,
except at the wall itself where it must be parallel to the wall. This pattern can
be explained by considering a beam of wave rays that reflects from a wall. The
combination of an incoming and a reflected wave ray yields motions that add up
to motions that are not parallel to one of the individual wave rays. Over a period,
the projection of the motion can then be an ellipse, with ellipticity and orientation
depending on the location in the beam.
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Figure 6. (a) Hodographs of self-similar attractor (arbitrary scaling; table 1, case c), based
on asynchronous sampling of 120 measurements and averaging per seven measurements with
nearly identical phase. For the solid ellipses motion is clockwise, for the transparent ellipses
motion is anticlockwise. (b) Decomposition of such an ellipse into two counter-rotating circles.

Therefore, it seems natural to use ellipse parameters to describe the observed
patterns. This is illustrated in figure 6(b). The ellipse can be characterized by its
main axes U and V , phase ϕ and orientation ψ . However, when motion is nearly
circular, slight perturbations determine the orientation ψ and therefore ϕ, resulting
in incoherent pictures with phase jumps. Also, in our definition ψ varies between
0 and 360◦, with the consequence that ϕ is between 0 and 180◦, rather than the
other (physically desirable) way round. In order to circumvent this, the ellipse is
decomposed into two circles, one traversed clockwise and the other anticlockwise.
These two circles are characterized by their radius W− and W+ and ‘phase’ θ− and θ+,
with U = W+ + W−, V = W+ − W−, where V will take negative values for clockwise
motion, ϕ = (θ− − θ+)/2 and ψ = (θ+ + θ−)/2. A more detailed description of this
decomposition can be found in Maas & van Haren (1987). When interpreting pictures
of θ−, one must keep in mind that the smaller θ−, the larger the true phase, since
θ− is defined as the anticlockwise angle with the horizontal axis, whereas the circle
is traversed in a clockwise sense (figure 6b). The advantage of this decomposition is
that the time series can be summarized in a few pictures, with the restriction that
flow other than this ellipsoidal motion with frequency equal to the forcing frequency
is filtered out. Nevertheless, since ellipsoidal motion is thought to represent the field
we are interested in, and it is clearly the dominant frequency in the spectrum, this
approach is justified.

The observations are presented in terms of U , θ+ and θ−. The major axis U re-
presents the intensity of motion. The minor axis V shows the deviation from rectilinear
motion. They are not shown separately, since they only seem to be significant near
the walls, where the waves reflect. The phases θ+ and θ− do not represent the physical
phase of the wave, since only a projection of the full three-dimensional motion is
considered. Still, these phase parameters indicate the propagation of the waves in the
(x, z)-plane.

Pictures of U , θ+ and θ− of all the different attractors and the standing wave mode
are shown in figure 7 for y = 0.24. At this y-coordinate a two-dimensional description
can be justified, since it is not close to a vertical endwall and the vorticity-conserving
flow is directed almost purely along the y-axis. It appears that all the predicted
structures are visible here. The colour scale is equal for all attractors. The pictures are
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constructed such that they start with the same phase with respect to the sinusoidal
forcing (t = 0), except for the (1,3)-attractor for which this phase was not determined
well. They are again based on asynchronous sampling and averaging over seven vector
fields with nearly the same phase.

In some pictures one can observe a narrow band from the top (x ≈ 1) to the bottom
(x ≈ 0.5). This is caused by the laser. The laser beam is turned into a laser sheet
by a prism to illuminate the fluid. But there is still a trace of the direct ray, which
perturbs the measurements. In the data processing, we interpolated to get rid of this
perturbation, but it is not always equally successful.

The critical slope attractor is not very visible; only the part near the sloping wall
shows intense motion. There is relatively more motion outside the attractor, compared
with the other frequencies. From the pictures of θ+ and θ− the V-shape is more clear.
Lines of equal phase are roughly aligned along the attractor for θ− near the sloping
wall. The other part of the attractor coincides with the rapid phase changes. Outside
the attractor, the phases vary smoothly over the plane and lines of equal phase are
not strictly parallel to wave rays.

The square and self-similar attractor are clearly visible. Motion is most intense near
the sloping wall, where the focusing takes place. On following the attractor in clockwise
sense, the intensity decays. Outside the attractor there is not much motion. Phase
lines are parallel to the attractor. The theoretical directions of phase propagation,
based on clockwise energy propagation along the attractor, are reproduced well by
the observations: phase propagates outwards for characteristics with positive slope
and inwards for characteristics with negative slope. In the middle of the cross-section,
far away from the attractor, motion is weak. The observed phases cannot be fully
relied on then, but structures are spatially coherent which gives the results credibility.

Phase lines of θ+ circle around the top and bottom reflection points of the attractor,
where the ellipses are completed in a clockwise direction. Phase lines of θ− circle
around the sidewall reflections of the attractor, where the ellipses are completed in
an anticlockwise direction. This can be explained by the fact that at the location
where all phase lines meet (amphidromic points) this phase is meaningless since the
corresponding motion W+ or W− vanishes there.

The degenerate attractor is rather weak and the line of maximum U is a little below
the predicted attractor location. There is a sharp phase contrast at the location of the
theoretical attractor. This suggests that particle motion on one side of the degenerate
attractor is opposite to that on the other side, which gives rise to high shear around
it, such that the attractor itself is not visible.

The (1,2)-mode looks like a weak attractor at first sight. Motion is concentrated
around a particular characteristic. On the line that connects the upper right corner to
the lower right corner velocities are (nearly) zero (see figure 2e). Motion is clearly less
intense than for the square and self-similar attractor. Phase lines are not everywhere
parallel to the wave rays. The sharp phase contrast corresponds to the line connecting
the upper right corner to the lower right corner of the basin, through the centres of
the counter-rotating cells. Evidence that this is a standing mode and not an attractor
will be given below.

The (1,3)-attractor is relatively weak. For this frequency, focusing is weaker than
for the (1,1)-attractor. Also, the attractor length (perimeter) is larger so that viscous
losses along the attractor may become more important. In the vertical, the scale of
the attractor is smaller than for the square and self-similar attractor. Where two parts
of the attractor with opposed particle motion are close together, they may interact
due to viscous effects, also reducing the strength of the motion. The location of high
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Figure 7. Decomposition of hodographs (figure 6) for (1,1)-attractors (critical slope, square,
self-similar and degenerate attractors), standing (1,2)-mode and (1,3)-attractor at y = 0.24. The
scale for U ranges from 0 (dark blue) to 0.4 cm s−1 (dark red). The colour scale for θ+,− is
periodic. The black lines indicate the theoretically predicted attractor. For the (1,2)-mode a
single, somewhat arbitrary periodic characteristic that matches the pattern is plotted (dashed).
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Figure 8. Angle φ = arctan(w/u) as a function of depth and time on vertical lines for square
attractor at x = 0.99, (1,2)-mode at x = 0.84 and (1,3)-attractor at x = 0.32. The pattern is
shown twice (two identical periods, asynchronous sampling) to visualize the pattern of phase
propagation better.

velocities in the measurements appears to agree well with the theoretical location of
the attractor. It is difficult to give a clear interpretation of the phase pictures. The
phase changes very rapidly across the line connecting the upper right corner to the
lower left corner.

4.1.2. Phase propagation

As already mentioned, there is evidence that the (1,2)-mode behaves differently from
the attractors. Phase changes take place at the same time over the whole cross-section.
This is illustrated in figure 8. The parameter φ = arctan(w/u) is plotted as function
of time on a vertical line. Although this parameter is not equal to the phase, changes
of φ are an indication of the phase changes. These sections are chosen such that for
the square attractor the strongest branch of the attractor is included. The term branch
refers to a part of the attractor between two boundary reflections. For the (1,2)-
mode both cells are included and for the (1,3)-attractor the part where propagation
is clearest. Asynchronous sampling was used to obtain a good time resolution. The
pictures confirm that the flow field is nearly purely periodic. The single period is
plotted twice to give a better impression of the continuity of phase propagation.

For the square attractor, phase shifts downwards with increasing time, implying
phase propagation. This is in accordance with energy propagation downwards, as
expected from the clockwise energy propagation along the attactor. There is a phase
shift around z = 1/2, related to the transition of one branch of the attractor to another,
but this is not visible in the black and white figure.

This is in strong contrast to the (1,2)-mode, which can be recognized as a standing
wave. Patterns do not alter during half a period, then they change abruptly over the
whole cross-section, to remain constant for the next half-period. The upper part of
the upper cell and the lower part of the lower cell have the same phase, as do the
lower part of the upper cell and the upper part of the lower cell. This is consistent
with the idea of two counter-rotating cells (figure 2h).

For the (1,3)-attractor there is upward phase propagation in the lower part,
downward propagation in the middle part and upward propagation in the upper
part. This agrees well with the expected propagation directions and locations where
this direction of phase propagation changes. Only in the uppermost part (z > 0.7) is
there downward propagation again. This is not according to the predicted attractor
shape, but can be attributed to a direct wave ray emanating from the upper left
corner. Such a wave ray can be seen in the picture of U for this attractor in figure 7.
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Figure 9. Mean speed the in x- (U, circles) and z-directions (W, stars) over the cross-section as a
function of distance to the front wall for the different frequencies (table 1).

4.2. Along-channel changes

Measurements were taken at different y-positions. These can be used to study the
structure of the attractor in the y-direction. To obtain an overall idea of the strength
of the motion for different distances to the front wall, an average of the absolute
value of the velocity components is computed per cross-section. The quantity U is
defined as

U =
1

NM

N∑
n=1

M∑
m=1

|u|nm

with M the number of gridpoints and N the number of timesteps. W is similarly
computed with w replacing u. This method does not distinguish wave motion from
other types of motion, periodic or not. But the results appear to be instructive in
comparing the y-dependent behaviour at the different frequencies, when interpreted
in combination with other observations. The results, a very great compression of the
data of almost all the observed vertical cross-sections, are presented in figure 9.

With increasing values of tan θ (increasing frequency of the waves), u increases and
w decreases. This implies that the difference between U and W increases. For a single
frequency, this difference must be constant if the two-dimensional approach is valid,
as is observed in the pictures of the square attractor and the (1,3)-attractor. Where
this is not the case, for example for the critical slope attractor, other phenomena must
contribute to the velocity field. In general the ratio U/W ≈ tan θ has the tendency to
be a little too large; the u-component of the flow is somewhat too strong. For small y-
values this might be an effect of the vorticity-conserving flow that is purely horizontal,
but since the u-component of the vorticity-conserving flow should decrease rapidly
with increasing y the ratio should also decrease, which is not observed. Another
explanation is that slowly rotating steady vortices, that were observed over the flat
part of the bottom in experiments with dye and that have nearly purely horizontal
motion, account for this effect.



Observations of inertial waves 75

The most striking difference between the observations for the different frequencies
is that for the critical slope attractor, the square and self-similar attractor there is a
clear decay of U and W with increasing y whereas this is not the case for the other
frequencies. This cannot be explained by the vorticity-conserving flow that contributes
most near the front wall. There is no reason to expect that this contribution varies
so strongly with the frequency.

Further and more detailed analysis of the structure of the wave field in the y-
direction is obtained by comparing the ellipse parameters in successive cross-sections.
For the critical slope and the self-similar attractor all the vertical cross-sections are
presented. For the other frequencies only a description will be given.

The critical slope attractor is shown in figure 10 for all y-positions observed since its
behaviour changes considerably in the y-direction. For y > 0.3 the phase could not
be determined by matching with the horizontal cross-sections, since the horizontal
cross-sections do not extend further. But it could be determined from the phase of
the plane-averaged u-velocity, a method that does not work for the other frequencies
but does reproduce the matching results for this specific frequency. The attractor is
developed best at y = 0.12 where the motion is strongest. In the picture at y =0.18 the
left (diagonal) part of the attractor is clear but the part at the sloping wall is not; at
y = 0.24 it is the other way round. At other locations either the left diagonal part or
the part parallel to the sloping wall is clearly visible, but not in the same cross-section.
Overall, the part near the sloping wall is most clearly visible. The general structure
of the phase lines is the same over all y-values. The V-shape can be recognized
even up to y = 0.42. But the absolute values vary considerably between the different
sections. It appears that the phase decreases with increasing y-value, implying energy
propagation from y = 0 towards the centre of the tank. Phase pictures that are about
1/5 of the basin length (100 cm) apart have almost the same phase, indicating a
wavelength of this size in the y-direction.

Instabilities and turbulence in the bottom boundary layer at the slope, as reported
by Cacchione & Wunsch (1974) and Ivey & Nokes (1989) for critical internal
waves, were not observed. Our observations do not resolve small-scale motion as
well as theirs (schlieren pictures), but on the scale of our observations the motion
along the sloping wall is described reasonably well by the two-dimensional attractor
model.

In figure 11 the ellipse parameters are shown for the cross-sections of the self-similar
attractor. All pictures have the same phase with respect to the sinusoidal forcing. Only
for y = 0.42 is the phase uncertain; matching with horizontal cross-sections did not
work since the motion is very weak there. The most striking feature of U is the
rapid decrease with increasing y, with maximum values near the sloping wall where
the waves were focused. This part of the attractor is still faintly visible at y = 0.36.
Also, at y =0.12 the shape of the attractor is slightly different: it is more narrow,
the reflection at the sloping wall occurs somewhat higher, the reflection point at the
bottom is shifted a little to the left and the reflection at the straight wall is at a lower
position. There is strong horizontal motion near the top of the tank, which is also
observed in Maas (2001). At y = 0.18 the attractor is most clearly visible. For y > 0.3,
the motion for x < 0.3 is horizontal.

The phase lines are aligned well along the attractor. Outside the attractor, where
the motion is weak, the phases are still rather coherent. Only for large y, where
the attractor is hardly visible, do the structures become incoherent. The phases
are more or less the same at the different y-positions; within the accuracy of the
phase determination, no phase propagation can be observed.
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Figure 10. Ellipse parameters U , θ+ and θ− for the critical slope attractor at y = 0.12, y = 0.18,
y = 0.24, y = 0.3, y = 0.36 and y = 0.42. The scale for U ranges from 0 (dark blue) to 0.4 cm
s−1 (dark red).
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Figure 11. Ellipse parameters U , θ+ and θ− for the self-similar attractor at y = 0.12,
y =0.18, y =0.24, y = 0.3, y = 0.36 and y =0.42. The scale for U ranges from 0 to 0.4 cm s−1.
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Figure 12. Location of horizontal cross-sections at z = 0.29, 0.41, 0.54, 0.66 and 0.79 with
respect to a vertical cross-section.

For the square attractor (not shown) the behaviour is similar to that of the self-
similar attractor; even the phases are the same in the equivalent part of the attractor.

We will briefly discuss the results for the other frequencies; they are not shown. The
degenerate attractor is poorly developed at y =0.12 where a lot of horizontal motion
is present in the upper half of the cross-section. However, from the θ−-picture the line
from the upper right to the lower left corner is clearly recognizable. The attractor is
still visible at y = 0.42. U is somewhat larger at y = 0.18 and y = 0.24, but does not
decay further with increasing y. There is no evidence for phase propagation in the
y-direction, as far as could be observed.

The (1,2)-mode behaves somewhat similarly to the degenerate attractor. At y = 0.12
the cellular pattern is not visible from the U pictures although the θ−-pattern hints
at a structure connecting the upper right to the lower right corner. The motion is
again dominated by horizontal motion in the upper half. At y = 0.24 and y = 0.3 the
cellular structure is most clear, but at y = 0.36 and y = 0.42 large parts can still be
recognized from the U pictures. From the phase lines the structure is even clearer,
especially the large upper cell with a sharp phase contrast diagonally through the
cell. At y = 0.12 the phase with respect to the forcing could not be determined well;
from the other cross-sections no significant phase propagation in the y-direction was
observed.

The (1,3)-attractor is also not visible at y =0.12; only in the middle of the cross-
section are some areas of higher U visible. The phase structure has two more or less
equal cells, one in the upper and one in the lower half of the section. At y =0.18 parts
of the attractor become visible, and at y = 0.24 the attractor is most clearly visible.
At larger y-coordinates the structure is not as clear but large parts of the attractor
are visible, and U hardly decreases. There were serious problems in matching with
the horizontal cross-sections, so no conclusions can be drawn regarding the phase
propagation in the y-direction.

4.3. Horizontal cross-sections

Measurements in horizontal cross-sections at different z-levels were taken for all
frequencies. Unfortunately, only a small part of the tank could be observed for a
single camera position, roughly from x =0.1 to 1.6 and from y = 0.1 to 0.3. In
figure 12 the positions of the horizontal cross-sections with respect to the self-similar
attractor are illustrated. For the self-similar and square attractor, measurements were
also taken that extend from y = 0.3 to 0.5, but they are of poor quality. There
were more problems in obtaining satisfactory results. The metal frames around the
glass plates inhibited the detection of particle motion at the edges of the glass
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plates. By interpolation this was compensated to some extent. At some locations the
measurements were poor due to the absence of tracer particles, which settled to the
bottom very slowly during the experiment, or due to stains on the glass plates. In
the horizontal, the vorticity-conserving flow dominates the fluid motion. To investigate
the structure of the inertial wave field, this flow must be subtracted from the observed
fields. Subtraction of the theoretically predicted field, while not exact, is also a
source of errors. But it does eliminate the most obvious vorticity-conserving flow
features.

As can be concluded from the previous paragraph, except for the critical slope
attractor, the wave field does not change significantly in the y-direction, apart from
intensity changes. The behaviour of each attractor is illustrated with results from a
single (most illustrative) cross-section. The results are shown in figure 13 in terms of
the ellipse parameters U and θ−. Motion was dominantly clockwise; only where the
intensity was very low was the motion anticlockwise, and therefore θ+ is not shown.
The black lines indicate the intersections with the theoretical attractor.

The cross-section of the critical slope attractor at z = 0.29 has most intense (although
weak compared to the intensities observed in the vertical cross-sections) motion near
the slope and around the theoretical line, but also closer to the straight wall. The
change of intensity of parts of the attractor that was observed in the vertical cross-
sections is not observed clearly in the horizontal cross-sections. In this area above the
flat bottom some steady vortex activity was observed from dye experiments, but it is
assumed to be filtered out by using the ellipse parameters. In the picture of θ− one
immediately sees the phase change in the y-direction, suggesting wave propagation in
the negative y-direction, implying energy propagation from the front wall (y = 0) into
the interior, with a wavelength that is a little larger than the cross-section, about 1/4.
In the other horizontal cross-sections of this attractor there is no clear intense motion
at the theoretically predicted locations. But again the phase propagation towards the
front wall can be observed with a wavelength of about 1/4. This is consistent with the
observations in the vertical cross-sections. Also, a phase change across the attractor
in the x-direction is reproduced.

For the square attractor the cross-section at z = 0.29 is also shown. At this level
the intersections with the strongest parts of the attractor are clearly visible from the
high values of U . It is remarkable that these values do not persist over the length
of the cross-section; the change around x = 0.3 for y < 0.15 is especially remarkable.
The phase lines in this cross-section are not fully parallel to the y-axis but there is
no clear phase propagation in this direction. Near x = 0.2 there is phase propagation
in the positive x-direction (energy propagation towards x = 0), as already observed
in the vertical cross-sections. The other cross-sections do not show consistent phase
propagation directions in the y-direction either. Locations of intense motion cannot
always be attributed to the attractor and are not continuous in the y-direction,
although this was suggested by the results in the vertical cross-sections.

For the self-similar attractor the behaviour at z = 0.54 is illustrated. There is strong
motion near the sloping wall, where the observations are slightly below the reflection
point. The weak part of the attractor is either not or hardly visible. Phase lines are
almost uniform in the y-direction. Near the branches of the attractor the directions of
phase propagation are consistent with the observations in the vertical cross-sections:
phase propagation towards the sloping wall near the sloping wall and towards the
straight wall for the other branch. In the other cross-sections the energy is concentrated
near the sloping wall and sometimes also around the other (in practice weak) branch
of the attractor. Phase lines are dominantly uniform in the y-direction.
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Figure 13. Horizontal cross-sections: ellipse parameters U and θ−. The critical slope, square and
degenerate attractor are shown at z = 0.29, the self-similar attractor is shown at z = 0.54 and the
(1,3)-attractor and the resonant mode at z = 0.66. The black lines indicate the intersections with
the theoretical two-dimensional attractor. The scale for U ranges from 0 (dark blue) to 0.4 cm s−1

(red), white contour lines indicate areas of clockwise motion, black lines of anticlockwise motion.
The scale for θ− is periodic. The black area to the right is the sloping wall. Slight perturbations
around y = 0.2 are due to the frames around the glass plates.

The degenerate attractor has a remarkable line of weak motion around the
theoretically predicted attractor, as already observed in the vertical cross-sections.
There is strong motion near the straight wall. At other levels of observation there
is also stronger motion on the sloping wall side of the attractor. Structures do not
extend over the full y-range of the cross-sections. The attractor is identified by means
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of the phase jump. Phase lines are roughly uniform in the y-direction. This behaviour
is observed at all levels of observation.

The cross-section at z = 0.66 for the (1,2)-mode is through the centre of the upper
cell (x =1). At this centre there is no motion, which is confirmed by the observation.
On both sides of this line of no motion there is rather strong motion. There is a phase
jump over this line. The phase is clearly uniform in the y-direction. In all horizontal
cross-sections the phase is dominantly uniform in the y-direction. In the x-direction
there is a rapid phase change at the locations corresponding to the characteristic
connecting the right upper corner to the right lower corner. The locations of intense
motion are consistent with the vertical cross-sections, but again not continuous in the
y-direction.

For the (1,3)-attractor, the cross-section at which most intense motion can be
expected is the one at z = 0.66. Here the attractor is intersected close to the uppermost
reflection at the sloping wall (focusing). For y > 0.2 there is indeed stronger motion.
However, this motion is weaker than for the other attractors. At the other horizontal
cross-sections there is nowhere really intense motion that can be related directly to
the theoretically predicted attractor. Motion is everywhere less intense than for the
other forcing frequencies. The phase patterns at different z-levels vary in both the
x- and y-directions when comparing them. The main phase changes for the different
cross-sections seem to be related to the characteristic connecting the upper right
corner to the lower left corner of the tank. It is not possible to draw firm conclusions
about propagation in the y-direction.

The imperfect correspondence between the observations in the horizontal and
vertical planes is a point of concern. Still, the results have value. In particular, the
critical slope attractor and the (1,2)-mode exhibit behaviour with a clear physical
interpretation. For the other frequencies, the results show different structures for the
different frequencies, but we are not yet able to interpret them. Therefore, we present
some of the observations in the horizontal cross-sections and leave interpretation to
the reader.

5. Discussion
The square attractor has already been observed in experiments by Maas (2001),

in a smaller tank of similar shape. His result is reproduced and extended with
observations of other attractor shapes and a standing wave, which are predicted for
different frequencies. This shows that in three dimensions also waves can be focused
towards an attractor. The two-dimensional theory correctly predicts the frequency
interval over which a certain attractor exists and the shape of the attractor. Although
viscosity will prevent the existence of a true line attractor, as a first-order description
this theory is valuable.

A further aim was to study the three-dimensional behaviour of the waves.
Separation of variables is not possible for a basin with a sloping boundary, and
no alternative method of finding solutions is known to us. Therefore we have to rely
fully on the observations.

The critical slope attractor is the only wave pattern with distinct three-dimensional
behaviour on the scale of the observations. Its intensity decreases with increasing y

and the location of the strongest motion on the attractor changes with y. There is
clear phase propagation towards the front wall (y = 0) and energy propagation into
the interior, with a wavelength in the y-direction between 1/5 and 1/4, as found from
the observations in the vertical and horizontal cross-sections.
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The other attractors do not exhibit clear phase propagation in the y-direction, only
intensity changes are detected. The square and self-similar attractor are strong near
y = 0.12 but their intensity decreases rapidly with increasing y. The degenerate and
(1,3)-attractor and the standing mode are not as strong, but their strength is more or
less constant for increasing y.

At least part of the variation of the strength of the motion with the y-position
must be attributed to the forcing mechanism, which in the present experiment is
weak modulation of the rotation rate. Another experiment was done in which waves
were excited by a paddle in the corner of the tank (near x = 0, z = 1), extending over
the full length of the tank. No modulation of the rotation was applied. This set-up
had the disadvantage that a direct ray is visible, which is stronger than the wave
attractor. It is difficult to provide enough energy to the fluid to generate an attractor
without introducing nonlinear effects. The few measurements for this set-up, for an
attractor in the (1,1)-domain, show more intense motion towards the centre of the
tank (y = 0.3) than near the front wall (y =0.12). So the distribution of energy in the
y-direction seems not to be an intrinsic property of the wave field.

It is likely that when waves are generated by modulation, direct forcing near the
endwalls, where the vorticity-conserving flow has a cross-slope component, dominates
the indirect generation (Ekman pumping). It remains puzzling why this decrease with
increasing distance to the endwalls is not observed for the weaker attractors.

The (1,2)-mode looks like an attractor in vertical cross-sections, since the most
intense motion is confined to narrow bands. However, in time the velocity changes
occur almost uniformly over the vertical cross-section, so the waves are not travelling
waves. Contrary to the common idea that the standing modes are the strongest
motions, the motion is weak, compared to the square and self-similar attractors.
Therefore, and for the following reason, the term ‘resonant mode’ is not appropriate
in this case. The standing wave does not suffer from nonlinear breakdown phenomena
as studied by McEwan (1970) and Manasseh (1992) for resonant modes in a cylinder.
Asynchronous sampling could be applied without any difficulty. This indicates a
steady pattern for the full period of observation, which is more than half an hour and
spans more than 70 rotation periods and several planes of observation. Apparently
the rotation rate and excitation strength, which play an important role in the growth
of the instabilities according to McEwan (1970), are low enough. We speculate that
focusing of the waves during part of the oscillation period prevents instabilities from
growing, since it forces unstructured motion back to structured motion, a process that
will not take place in a rotating cylinder. Also, the damping rate may be increased
due to the smaller scales imposed by wave focusing.

The wave rays connecting the corners of the tank for the (1,2)-mode are clearly
visible as lines of low motion and sharp phase contrast. This is probably a result of
the forcing function. Wood (1965) calculated the nature of such lines of discontinuity
for a rotating and precessing cylinder. Their exact properties (discontinuity in velocity
or velocity gradient) depend on the number of reflections it takes before the lines
are reflected back onto themselves. Baines (1967) also made calculations regarding
these lines, for a rotating cylinder (radius a) in which inertial waves were forced
by oscillation of the end caps. At these end caps the vertical velocity is essentially
prescribed as f (r) cos ωt with r the radial coordinate. Lines of discontinuity of
the velocity occur if f ′(r) has discontinuities and if f ′(a) �= 0 and in some cases
if f ′′(a) �= 0. Maas & Lam (1995) illustrate, for the bucket (two sloping walls),
that the shape of the resonant mode is strongly dependent on the exact properties
of a function on the boundary. This function prescribes the information carried
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by the characteristics (partial pressure) and replaces the prescription of the forcing
mechanism. Only if this function has a derivative equal to 0 at the boundaries of the
region for which it can be prescribed, are the cells smooth and there are no lines
of discontinuity. In an experiment, one cannot prescibe this function at will. It is
determined by the chosen setting and in general the condition of zero derivative will
not hold. For example McEwan (1970) reports lines of strong shear emanating from
the corners of the rotating cylinder. Also Greenspan (1968a) and Beardsley (1970)
report wave rays stemming from the upper corners of rotating cones, that are seen
to reflect a few times at the boundaries. They applied modulation of the rotation
frequency to generate waves via Ekman pumping as we did. However, in the rotating
cones the vorticity-conserving flow will not have a cross-slope component, which is
the primary forcing in our case. We also sometimes observed a wave ray emanating
from the corner at x = 0, z =1 for the square and self-similar attractors.

These are not many experiments in the literature in which focusing of inertial
waves is studied experimentally. The emphasis has been on resonant modes and
their interaction and the interaction with the background flow. At first sight, the
article by Beardsley (1970) is not an exception, but his results for the truncated
cone (frustum) can be interpreted in terms of wave attractors. Plotting the Lyapunov
exponent for his configuration yields a structure similar to that of figure 1(b), with
windows of attractors and isolated frequencies for which resonances occur. The
amplitude maxima in the pressure sensors that he used do not occur for the simplest
resonant modes, but for frequencies close to the strongest windows of attraction.
Henderson & Aldridge (1992) solve the equations for the frustum numerically and
interpret the results in terms of eigenmodes. However, their numerical grid is not
fine enough to resolve a wave attractor. They also analytically compute two special
ray paths, connecting the upper and the lower corners respectively, and compare
the corresponding propagation angle (frequency) with the numerically determined
eigenfrequency (their figure 4). The two paths yield two slightly different values for
the propagation angle. For an eigenmode, this angle should be unique. These special
ray paths can be identified with the upper and lower boundary of the window of an
attractor, thus explaining the appearance of the two different values.

To conclude: the two-dimensional theory correctly predicts the frequencies and basic
shapes of the attractors and the standing mode, but the three-dimensional structure
has not been resolved satisfactorily. It would be interesting to have observations
near y = 0 and for the other half of the tank to see if the behaviour is more or
less symmetric or antisymmetric with respect to y = 1/2 or if there is a preferential
direction. Possibly, rapid changes near the walls, as predicted for inertial waves in a
rectangular box (Maas 2003) could not be resolved well in our experiments. Similar
experiments have been carried out in a smaller tank. They can shed more light on
the three-dimensional behaviour of the waves and we hope to report on them in the
future (Manders & Maas 2003). Also numerical simulations would be instructive.

The authors gratefully acknowledge the help during the experiments from the
team of the Coriolis Laboratory (Grenoble) and Frans Eijgenraam, Ronald de
Leeuw and Theo Gerkema (NIOZ). We would also like to thank Maartje Rienstra
for her contribution to the experiments, data processing and discussion. We thank
M. Rieutord, J. Sommeria and an anonymous referee for constructive remarks. This
project was financially supported by the European Community (program ‘Access to
major research infrastructures’) and A. M. is supported by the Dutch organization
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Appendix. Vorticity-conserving flow
Here the structure of the vorticity-conserving flow is derived for a tank with a

sloping wall. This tank has length L and height H0 over the flat bottom; the water
depth H (x) is function of x only. The top of the basin has width 2B and the bottom
has width B . The angular frequency Ω(t) consists of a weak modulation εΩ1(t),
ε � 1, around the steady-state value Ω0.

When studying spin-up problems in tanks with a sloping bottom, van Heijst et al.
(1994) found that the exact solution for a wedge-shaped tank (2B =H0, L 
 H0)
showed almost no variation in the vertical direction. This justified the shallow-water
approximation for a tank with a sloping bottom that is long in the along-slope
direction (L 
 H0). Since our tank has a closely related geometry, we follow their
approach and also make this approximation. This enables the calculation of an exact
solution for the approximated problem.

The first step is to compute the vorticity ∇ × ∂u/∂t for the linearized momentum
equations (2.1). Because of the shallow-water conditions, variations of u and v with
z are neglected. The vertical vorticity equation is

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
= −2Ω0

(
∂u

∂x
+

∂v

∂y

)
− 2

∂Ω1

∂t
. (A 1)

Integrating the continuity equation (2.2) over the vertical, with boundary conditions
of no flow through the bottom and the top, results in the equation for the conservation
of mass:

∂

∂x
(uH ) +

∂

∂y
(vH ) = 0. (A 2)

Substitution in (A 1), division by H and introduction of ζ = ∂v/∂x − ∂u/∂y for the
vertical vorticity, gives

1

H

∂ζ

∂t
=

2Ω0

H 2

(
u

∂H

∂x
+ v

∂H

∂y

)
− 2

H

∂Ω1

∂t
. (A 3)

Rearranging terms shows that (A 3) is the lowest order of the total time derivative
(material derivative)

D

Dt

(
ζ + 2Ω

H

)
= 0 (A 4)

which means that individual particles conserve potential vorticity:

ζ + 2Ω

H
= C.

Before the modulation starts, the fluid is in solid-body rotation with angular frequency
Ω0. This gives the constant C the value 2Ω0/H . Take the modulation of the form

Ω = Ω0(1 + ε sin ωt)

so that the perturbation vertical vorticity is

ζ =
∂v

∂x
− ∂u

∂y
= −2Ω0 sin ωt. (A 5)

Introduce the mass transport stream function

Ξ (x, y, t) = Ψ (x, y) sin ωt (A 6)
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with the spatial part defined as

Hu = −∂Ψ

∂y
, Hv =

∂Ψ

∂x
. (A 7)

Substitution of these expressions into (A 5) leads to

∇2Ψ − 1

H
(∇H · ∇Ψ ) = −2Ω0H. (A 8)

The boundary conditions are

Ψ = 0 at x = 0, x = 2B and at y = 0, y = L. (A 9)

The bottom profile H of our tank is given by

H (x) =

{
H0, 0 � x < B

H0(1 − (x − B)/B), B � x � 2B.
(A 10)

Substitution of this bottom profile naturally splits the equation for the stream function
in two parts: one for the flat bottom and one for the sloping bottom, denoted by Ψ1

and Ψ2 respectively:

Ψ1 : ∇2Ψ1 = −2Ω0H0, 0 � x < B

Ψ2 : ∇2Ψ2 +
1

H0(2 − x/B)

H0

B

∂Ψ2

∂x
= −2Ω0H0

(
1 − x − B

B

)
, B � x � 2B.



(A 11)

These equations can be solved separately but the solutions are subject to matching
conditions at x = B , requiring continuity and smoothness.

For convenience the equations will be scaled:

x = B(x ′ + 1), y = L(y ′ + 1/2), Ψ = −2B2H0Ω0Ψ
′. (A 12)

The dimensionless equations (primes dropped from now on) are

Ψ1xx + µ2Ψ1yy = 1, (A 13)

Ψ2xx +
1

1 − x
Ψ2x + µ2Ψ2yy = 1 − x, (A 14)

where µ = B/L, with boundary conditions

Ψ1 = 0 at x = −1 and at y = ±1/2,

Ψ2 = 0 at x = 1 and at y = ±1/2,

Ψ1 = Ψ2 at x = 0,
∂Ψ1

∂x
=

∂Ψ2

∂x
at x = 0.

(A 15)

A solution of the homogeneous part of (A 13) is obtained by separation of variables,
leading to

Ψ1h = P cosh

(
λ

µ
y

)
sin(λ(1 + x)). (A 16)

A particular solution to (A 13) is Ψ1p = 1
2
(x + 1)2 + c1(x + 1). The complete solution

satisfies the boundary condition at x = −1. The constants P and c1, and the eigenvalue
λ are to be determined from matching of the solutions at x = 0 and the boundary
conditions at y = ±1/2.
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Separation of variables for the homogeneous part of (A 14) leads to a solution in
terms of the first-order Bessel function J1:

Ψ2h = R cosh

(
λ

µ
y

)
(1 − x)J1(λ(1 − x)). (A 17)

A particular solution to (A 14) is Ψ2p = 1
3
(1 − x)3 + c2(1 − x)2. The complete solution

satisfies the boundary condition at x =1; the constants R, c2 and the eigenvalue λ are
to be determined from matching at x = 0 and the boundary conditions at y = ±1/2.

Matching at x = 0 gives the values c1 = −7/9 and c2 = −11/18 and leads to the
eigenvalue equation

J0(λ) sin λ + J1(λ) cos λ = 0 (A 18)

which results in a discrete spectum of eigenvalues λn that can be approximated
numerically and a series of Pn and Rn.

Now that the general structure of the solution is complete, the constants Pn and Rn

can be computed from the condition Ψh + Ψp = 0 at y = ± 1
2

for both domains, using
an orthogonal set of eigenfunctions. The eigenfunctions are

em =




sin λm(1 + x)

sin λm

, −1 � x < 0

J1(λm(1 − x))

J1(λm)
, 0 � x � 1.

(A 19)

They are orthogonal with respect to the weight function w,

w =

{
1, −1 � x < 0
1 − x, 0 � x � 1

and the orthogonality relation is∫ 0

−1

sin(λm(1 + x)) sin(λn(1 + x))

sin λm sin λn

dx +

∫ 1

0

(1 − x)
J1(λm(1 − x))J1(λn(1 − x))

J1(λm)J1(λn)
dx

= δnm

1

2

(
1

λn

cos λn

sin λn

+
2

sin2 λn

)
. (A 20)

The matching condition at x = 0 relates the constants P and R as Pn sin(λn) =
RnJ1(λn) = Qn where Qn is introduced for convenience. Qn is determined by the
boundary condition at y = ±1/2. It is computed by inserting y = 1/2 in the full
solution, multiplying by the eigenfunctions and integration over the domain∫ 0

−1

Ψ1h

(
x, 1

2

)
em dx +

∫ 1

0

Ψ2h

(
x, 1

2

)
em dx +

∫ 0

−1

Ψ1p(x)em dx +

∫ 1

0

Ψ2p(x)em dx = 0.

(A 21)
leading to

Qn =
2

cosh
λn

2µ

(
1

λn

cos λn

sin λn

+
2

sin2 λn

)
{

1

J1(λn)

(
− 1

λ3
n

J1(λn)S2,0(λn)

− 1

2λ2
n

J0(λn)S3,1(λn) +
11

18

1

λn

J2(λn)
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−
(

5

18λn

+
1

λ3
n

)
cos λn

sin λn

− 2

9λ2
n

+
1

λ3
n sin λn

}
. (A 22)
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The functions S2,0 and S3,1 are Lommel’s functions (Magnus, Oberhettinger & Soni
1966).

The complete solution in the original coordinates is given by

Ψ = −2B2H0Ω0

×




∞∑
n=1

Qn

sin λn

cosh

(
λnL

B

(
y

L
− 1

2

))
sin

(
λn

x

B

)
+

1

2

( x

B

)2

− 7

9

( x

B

)
, 0 � x <B

∞∑
n=1

Qn

J1(λn)
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(
λnL

B

(
y

L
− 1

2

))(
1 − x − B

B

)
J1

(
λn

(
1 − x − B

B

))

+
1

3

(
1 − x − B

B

)3

− 11

18

(
1 − x − B

B

)2

, B � x � 2B.

(A 23)

The velocities can be derived via

u = − 1

H (x)

∂Ψ

∂y
, v =

1

H (x)

∂Ψ

∂x
(A 24a, b)

This results in an ‘ellipsoidal’ flow, with maximum velocities at the middle of the
boundaries and with zero velocity above the flat part, at x ≈ 0.39 × 2B .
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